The results from the first wave of testing were stunning. Most notably, efficacy against the disinfectant-resistant spore form of Clostridium difficile was excellent and >99.9% reductions in contaminant microorganisms were seen within just 5-12 minutes of treatment.

This led to a host of follow-on studies running in parallel with a series of device improvements. Most of this testing was done in Microchem Laboratory's device-testing room, where dozens of inoculated test surfaces were placed throughout the room on multiple occasions, treated with Xenex, then evaluated afterwards. Microorganisms ranging from VRE to MRSA to C. difficile were all tested. Recently, Xenex worked with Microchem Laboratory to evaluate efficacy of the device when certain visible wavelengths of light are filtered, resulting in a less distracting user experience.
With "proof of concept" firmly in hand, Xenex set off on a series of pioneering studies to evaluate the effect of using the device in hospitals. The first of these studies have since been published in prestigious journals, such as Infection Control and Hospital Epidemiology. More studies will be published in the years to come.
As a general matter, the Xenex approach to surface disinfection outperforms traditional chemical approaches. Consider this: A recent peer-reviewed by Philip Carling, et al., showed that nearly half of all high-risk surfaces that should have been cleaned in a group of 36 acute care hospitals were missed during the cleaning process. Xenex UV light contacts virtually every high-risk surface every time it is used.
Mark and the Xenex team recognized the inherent advantages of the pulsed-UV approach, but could not have envisioned the dramatic effect it would have when used diligently in healthcare settings. Recent research has shown an 82% reduction in C. difficile infection rates at Cooley dinkinson Hospital in Massachusetts. As a result of decreased hospital-associated infections, Cone Health in North Carolina reported a $2.3 million cost savings within 6 months.

Though the Xenex device and technology have matured rapidly, Microchem Laboratory continues to play an important role in developing the science of UV surface disinfection. The lab frequently analyzes blinded environmental samples collected from hospitals using the device for the presence of MRSA, VRE, and C. difficile. This data helps Xenex better understand the performance of the device and assures customers that they are getting the promised impact from the device. With Microchem Laboratory's fast turnaround times and robust microbiological methodology, the data is reliable and available to them right away.